NCEH/EHSP/ Emergency Management, Radiation and Chemical Branch Presents:

Radiation Epidemiology: The Good, the Bad, and the Ugly

John D Boice Jr
National Council on Radiation Protection and Measurements
Vanderbilt University
john.boice@ncrponline.org

February 28, 2018
Outline of Presentation

- What is Radiation Epidemiology?
- What Makes a Study Good (Reliable)?
- What Makes a Study Bad (Unreliable)?
- What Makes a Study Ugly (Flawed)?
- Summary and Recommendations
Radiation epidemiology is the study of ionizing radiation as a cause of disease in human populations.
Radiation Epidemiology

- Radiation epidemiology is the basis for radiation protection standards and for compensation schemes.
- But the plethora of epidemiologic studies with conflicting results create confusion for the decision makers and general public. How do you separate the wheat from the chaff? What studies produce reliable estimates of radiation risk that can be used in making decisions?

 - **Good** Study – reliable & could use in making decisions.
 - **Bad** Study – unreliable, don’t use for making decisions or estimating risks
 - **Ugly** Study – flawed or inadequate design. Discount entirely for estimating radiation risks or making decisions.
Epidemiology is the study of the distribution and causes of disease in humans.

Radiation Epidemiology Dates Back 100 Years

- X-Rays Discovered 1895
- Skin/Bone Cancer
- Radium Dial Painters
- Thorotrast Imaging
- Radiologists
- A-Bomb Data
- Duffy Thyroid Cancer
- Nuclear Workers
- Medically Treated Populations
- Underground Miners (Radon)
- Chernobyl
- Cancer Survivors (therapy)

Timeline:
- 1900
- 1910
- 1920
- 1930
- 1940
- 1950
- 1960
- 1970
- 1980
- 1990
Radiation epidemiology (United Nations 2008) tells us that:

- a single exposure to radiation increases cancer risk for life.
- the young are more susceptible than the old, with exceptions
- *in utero* susceptibility is no greater than early childhood
- females are more susceptible than males.
- risks differ by organ or tissue
- some cancers don’t appear related to radiation, e.g., chronic lymphocytic leukemia, Hodgkin & non-Hodgkin lymphoma, melanoma; cancers of the cervix, prostate, pancreas, & some only at very high doses, e.g., sarcomas.

Epidemiology changed the focus from genetic effects in offspring to somatic effects on the individuals exposed.
Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed to accurately access risks related to:

- Medicine
- Accidents or Terrorism
- Occupation
- Environment
- Space and High Altitude Travel
1- Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed to accurately assess risks related to medical exposures

Over 80 million CT examinations last year in the U.S.
2- Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed to manage nuclear incidents and terrorism

Fukushima Daiichi Reactor Accident

Radiation Poisoning - Litvinenko

Weapons of Mass Destruction - Aftermath
3- Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed to manage occupational exposures
4- Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed to manage or address environmental exposures
5- Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed for guidance for space & high altitude travel
6- Why is Radiation Epidemiology Needed?

Much is Known about Radiation Health Effects When Exposure is Received All at Once (Briefly)

The Major Gap is Understanding the Health Effects from Exposures Received Gradually Over Time

Needed for public policy & decision making

- Low-Dose Radiation Research Act of 2017 – HR 4675 (Passed the House of Representatives – Senate next)
- Setting Standards for Occupational and Environmental Exposures
- Compensation Schemes for Prior Radiation Exposures
Radiation Epidemiology

- What is Radiation Epidemiology?
 - What Makes a Study Good (Reliable)?
 - What Makes a Study Bad (Unreliable)?
 - What Makes a Study Ugly (Flawed)?
 - Summary and Recommendations
Types of Epidemiologic Studies

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Intrinsic Quality</th>
<th>Susceptibility to Bias (Errors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental (rare)</td>
<td>Highest</td>
<td>Least</td>
</tr>
<tr>
<td>Cohort (Follow-up)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-Control (Start with Disease then Exposure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecologic (Geographic or Correlation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No Study is Perfect

- Most radiation epidemiologic studies are **observational**.
- There are known and unknown biases and confounding influences that can distort study findings.
- There are **intrinsic limitations** to study design.
- Meta-analyses are becoming more common but concerns relate to the selection of studies to include, and the influence of poor but large studies.
Epidemiologic Concerns that Could Produce Spurious Results

- Chance (random variation)
- Bias (systematic error)
- Confounding (e.g., differences in smoking histories)

- A study can be good (reliable), bad (unreliable), or ugly (flawed and provides either wrong information on radiation risk or no information)
What Makes a Radiation Epidemiology Study Good?

- **Dosimetry** (exposure assessment) is very good
- **Information bias** is minimized (i.e. information on health outcomes is comparable for exposed and non-exposed)
- **Selection bias** is minimized (i.e. no selective inclusion or exclusion of subjects in relation to exposure or outcome)
- **Confounding** influences can be controlled (i.e. the determinants of disease risk other than radiation)
- **Sample size** large enough to have the statistical ability to detect effects and to minimize the role of chance
- **These issues are of great concern when exposures are low and the exposure rate is low**
Dosimetry is Key to Good Epidemiology

- Key concern is **limitations** in exposure assessment
- **Goal** – accurate and precise estimates of organ-specific absorbed doses
- Need estimates for **individuals** & address uncertainties
- Measurement errors, **challenges** with intakes of radioactive substances

Till et al, *Dosimetry used in Epidemiologic Studies*. IJRB 2017
Two Examples of Good Radiation Epidemiology Studies

- Japanese Atomic Bomb Survivor Study (The Life Span Study, LSS)
- TB-fluoroscopy studies

Basis for protection standards

Ozasa et al, *Rad Res* 177; 2012
Atomic Bomb Survivor Study – Why a Good Study?

- **Well-defined** population – census 1950
- **Dose estimates** – refined over 70 years
- **Follow-up** – near perfect for mortality
- **Ascertainment** of deaths (outcome) – near perfect
- **Analysis** – state of the art statistical methods used by most radiation epidemiologists throughout the world
- **Interpretation** – balanced, and data are available to the world
- **Not without limitations**
 - An acute exposure of a 1945 population
 - How representative of populations today exposed gradually over years?
 - Study size of 86,000 is somewhat small compared with recent worker studies
 - Challenging to adjust for confounders
Even Good Studies have uncertainties & challenges
Studies of Low-Dose Exposures Accumulating to High Dose

Lung collapse therapy for tuberculosis and associated multiple chest fluoroscopic x-rays (1930-1954)
Dose Response – Consistent with Other Breast Cancer Studies

Consistent with a straight line fit

Massachusetts Fluoroscopy
Breast Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies

BENIGN BREAST DISEASE (SWEDEN)

Preston et al, 2002

Adapted from Art Schneider, 2011
No Dose Response for Lung TB - Fluoroscopy, Massachusetts

<table>
<thead>
<tr>
<th></th>
<th>Lung</th>
</tr>
</thead>
<tbody>
<tr>
<td># exposed</td>
<td>6,285</td>
</tr>
<tr>
<td># unexposed</td>
<td>7,100</td>
</tr>
<tr>
<td># chest fluoroscopies (avg.)</td>
<td>77</td>
</tr>
<tr>
<td>Dose to lung or marrow</td>
<td>840 mGy</td>
</tr>
<tr>
<td>Observed (O)</td>
<td>69</td>
</tr>
<tr>
<td>Expected (E)</td>
<td>86</td>
</tr>
<tr>
<td>RR (95% CI)</td>
<td>0.8 (0.6-1.0)</td>
</tr>
</tbody>
</table>

No excess lung cancer

Not all tissues respond similarly to fractionation

Be cautious when generalizing

TB-Fluoroscopy – Why a Good Study?

- **Complete patient identification** from medical records in TB sanatoriums.
- **Good dosimetry**: Numbers of fluoroscopies known, patients & physicians interviewed, original fluoroscopes available, top medical physicists involved
- **Follow-up** near perfect because of special Massachusetts town books (comparable by dose)
- **Outcome complete** (deaths) and comparable by dose
- **Analyses** are robust – in collaboration with the atomic bomb study statisticians.
- **Consistent** with the other *good* studies.
Example of Reverse Causation
In a Good Study

- Thyroid cancer following I-131 scans for evaluation of thyroid conditions in Sweden among 35,000 adults (thyroid dose 0.94 Gy, avg.)

Clinical data abstracted for all 35,000 patients, including thyroid size, I-131 activity administered and the reason for the examination. Holm et al. *JNCI* (1988)

Risk Among All Subjects

Reason for I-131 Scan (No. Cancers) vs. RR of Thyroid Cancer

<table>
<thead>
<tr>
<th>Reason for I-131 Scan (No. Cancers)</th>
<th>RR of Thyroid Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Reasons (105)</td>
<td>1.8*</td>
</tr>
</tbody>
</table>

- Significant thyroid cancer risk overall (RR 1.8*) among the 35,000 scanned

Note that the adult thyroid gland is not considered radiosensitive.
Risk by Reason for the I-131 Exam

<table>
<thead>
<tr>
<th>Reason for I-131 Scan (No. Cancers)</th>
<th>RR of Thyroid Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Reasons (105)</td>
<td>1.8*</td>
</tr>
<tr>
<td>Suspicion of Tumor (69)</td>
<td>3.5*</td>
</tr>
<tr>
<td>Other Reasons (36)</td>
<td>0.9*</td>
</tr>
</tbody>
</table>

- I-131 did not cause thyroid cancer, but suspicion of thyroid tumor caused the I-131 examinations.

- No excess risk if scan performed for “other reasons” (RR 0.9), e.g., hyperthyroidism or hypothyroidism.
Reverse Causation and Confounding by Indication Occur in Epidemiologic Studies

- **Confounding by indication** - when the medical condition or suspicion of an underlying disorder was the cause of the radiation examinations.
- **Imaging for thyroid** conditions with I-131
- **Imaging for brain** conditions with Thorotrast (Thorium Dioxide)
- **CT imaging** – the reasons for the exams were unknown

Boice. Radiation epidemiology and CT studies. *Annals ICRP* 2015
Radiation Epidemiology

- What is Radiation Epidemiology?
- What Makes a Study Good (Reliable)?
- What Makes a Study Bad (Unreliable)?
- What Makes a Study Ugly (Flawed)?
- Summary and Recommendations
What Makes a Radiation Epidemiology Study Bad?

- **Selection bias** (subjects included or excluded based on exposure or outcome)
- **Information bias** (information on health outcomes is not comparable for exposed and non-exposed subjects)
- **Plausible confounding**
- **No dosimetry** or poor quality
- The participation, follow-up and outcome ascertainment were severely incomplete and different by exposure status
- **Inconsistent** with “good” studies
- **Focus on subgroup analyses** that were not *a priori*
Examples of Bad (Unreliable) Studies

- UK CT examinations & childhood cancer
- Australian CT examinations & childhood cancer

Charles Schultz, Peanuts
United Kingdom CT Study

- Record linkage study of leukemia and brain cancer following CT scans to 178,000 persons at ages 0–21
- Significant findings at very low doses – but no dosimetry
- Not leukemia but leukemia plus MDS

Leukemia & MDS
excess relative risk per mGy = 0.036
excess relative risk per Gy = 36

Brain
excess relative risk per mGy = 0.023
excess relative risk per Gy = 23.

Pearce et al., Lancet 2012
“Children who receive frequent examinations may have some underlying disability related to the outcome of interest. That is, a child who receives multiple CT exams of the head may have a central nervous system disorder that is prompting such examinations that eventually results in a cancer diagnosis.” – *Reverse Causation* – X-rays aren’t ‘causing’ cancers, the underlying medical conditions are ‘causing’ X-rays.
Data linkage study of 680,000 children (0-19 y) who received CT scans - no dosimetry

Excesses reported for practically all cancers:

- Digestive organs
- Melanoma
- Soft tissue
- Female genital
- Urinary tract
- Brain
 - after brain CT scan
 - after other CT scan
- Thyroid
- Leukemia (myeloid)
- Hodgkin lymphoma

But not for these radiosensitive cancers:

- Breast Cancer
- Lymphoid Leukemia

Brain cancer was increased whether or not the brain was exposed.

Mathews et al., *BMJ* 2013
Lack of information about indications for the CT scans indicates the potential for ‘reverse causation’ (i.e. cancers may have been caused by the medical conditions prompting the CT scans rather than by the CT dose)

No individual dosimetry

Inconsistencies with epidemiologic studies on age at exposure, latency, radiation risk estimates.
Studies Addressing Reverse Causation

- **Germany**: A considerable proportion of cancer patients (especially those with lymphomas and solid tumors) had medical conditions indicating an increased cancer risk and signs possibly suggestive of cancer at time of first CT. (Krille et al. *Rad Env Bio* 2015)

- **France**: Adjustment for cancer-predisposing factors (PF) reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. (Journy et al. *Br J Cancer* 2015)

- **USA**: CT exams for shunt treatments for hydrocephalus, no risk found but small numbers. (White et al. *J Neurosurg Ped* 2014)
Radiation Epidemiology

- What is Radiation Epidemiology?
- What Makes a Study Good (Reliable)?
- What Makes a Study Bad (Unreliable)?
- What Makes a Study Ugly (Flawed)?
- Summary and Recommendations
What Makes a Radiation Epidemiology Study Ugly?

- Similar (but more severe) problems as in Bad studies: selection and information bias, confounding present
- NO dosimetry
- Population ill-defined and participation and follow-up severely incomplete
- But also, the study design may be inadequate and not up to the task at hand, e.g. correlation (ecologic) studies can be well-design and conducted, yet they can provide no information on estimating radiation risks
Examples of Ugly (Flawed) Radiation Epidemiologic Studies

- Fukushima thyroid screening
- Cancer around nuclear facilities in the U.S.
A New Study:
Excess of thyroid cancer detected in Fukushima is because of radiation, not “screening effect.”
(Epidemiology May 2016)

- Tokyo (AP): A new study says children living near the Fukushima nuclear melt downs have been diagnosed with thyroid cancer at a rate 20-50x that of children elsewhere, a difference the authors contends undermines the government’s position that more cases have been discovered in the area only because of stringent monitoring.

- A bit overstated and conclusions a bit inflammatory?

- Screening by ultrasound is known to increase the rates of thyroid tumors, i.e., by detecting indolent tumors that might never become symptomatic. *Tsuda et al. Epidemiology, May 2016.*
Korea’s Thyroid-Cancer “Epidemic” -- Due to Screening and Overdiagnosis

Thyroid Cancer Incidence Rising due to Screening

Thyroid Cancer Mortality Flat

Thyroid-Cancer Incidence and Related Mortality in South Korea, 1993–2011.

Ahn HS et al. NEJM 2014
Why the Screening Study is Ugly (Terminally Flawed)

- The risk was enormous: 20-50 time population rates (this would be the highest radiation risk of all time)
- Latency (< 4y) too short and not consistent with the world’s literature
- Age at exposure association (teenagers & not children had the highest rates) not consistent with the world’s literature
- No dosimetry and no geographical variation by dose (regions)
- Similar screening results found in areas not affected by Fukushima
- And doses much too low to have any effect
- The screenings were designed to be surveys to show compassion, provide assurance, and reduce anxiety – they did the opposite
Overall Relative Risk of Leukemia Before and After Nuclear Facility Startup

- **Childhood Leukemia**
 - Before Startup: 1.08
 - After Startup: 1.03

- **Leukemia All Ages**
 - Before Startup: 1.02
 - After Startup: 0.98

Risk higher before than after facilities began operating
Why the Nuclear Facility Study is Ugly

- Despite large numbers, sound investigators (NCI) and published in JAMA…
 - A correlation (ecologic) study does not have information on individuals but groups – no individual dosimetry and no individual data on potential confounding factors
 - Individuals may not have lived in the area long before dying there
 - Correlation is not causation (cigarette sales correlated with refrigerators)
 - Correlation studies are good for generating hypotheses, not for testing them.
Take Home Message

- What is Radiation Epidemiology?
- What Makes a Study Good (Reliable)?
- What Makes a Study Bad (Unreliable)?
- What Makes a Study Ugly (Flawed)?

Summary and Recommendations
We live in a world of ever increasing radiation exposures
Radiation epidemiology is needed
There are not enough radiation professionals
ALL studies have limitations, some are useful, some are not
How can you separate the wheat from the chaff?
Take Homes - 2

- How can you separate the Good from the Bad and Ugly?
 - Sound *methodology* (population well-defined, follow-up and outcome ascertainment complete, adequate study size)
 - *Minimal* bias and adequate control of confounding
 - *HIGH QUALITY DOSIMETRY*
 - Comprehensive *statistical analysis*
 - *Consistent* with other Good studies and biologically plausible

- Don’t believe everything you read, even if the impact factor is 50!
- Be skeptical, there is a lot of Bad and Ugly out there!
If you benefited please tell the CDC that “it was so typically brilliant of them to have invited a radiation epidemiologist.”
But please don’t bother if not so brilliant!

Thanks Steve Simon
Thank you