Contents

Preface ... iii

1. Executive Summary .. 1
 1.1 Introduction ... 1
 1.2 Formulating Responses to Nuclear or Radiological Incidents 4
 1.3 Late-Phase Recovery: A Challenging Journey to Resume Normal Life .. 5
 1.4 Optimizing Decision Making: A Framework and Process ... 7
 1.5 Stakeholder Engagement in Decision Making .. 9
 1.6 Managing Long-Term Contamination ... 11
 1.7 Path Forward and Recommendations ... 12

2. Introduction ... 14
 2.1 Purpose ... 14
 2.2 Target Audiences .. 16
 2.3 Scope ... 16
 2.4 Approach to Optimization .. 18
 2.4.1 Late-Phase Recovery Considerations .. 18
 2.4.2 Principle of Optimization of Radiation Protection: Approach and Implementation 19
 2.5 Lessons Learned from Past Incidents .. 21
 2.6 Relationship to Other NCRP Documents .. 22
 2.7 Report Structure .. 23

3. Description of Major Nuclear or Radiological Incidents with Long-Term Contamination 25
 3.1 Introduction ... 25
 3.2 Description of Major Historic Nuclear or Radiological Incidents 26
 3.2.1 Accidents Associated with Nuclear Facilities ... 26
 3.2.1.1 Mayak Nuclear Facilities Accident: The Kyshtym Accident (1957) 26
 3.2.1.2 Chernobyl Nuclear Reactor Accident (1986) ... 27
 3.2.1.3 Fukushima Dai-ichi NPP Accident (2011) ... 27
 3.2.2 Incidents Involving Radioactive Materials: The Goiânia Radiological Accident (1987) 28
 3.3 Nuclear or Radiological Incidents from Terrorist Acts .. 29
4.2.2.2.1 Issues Associated with Existing Systems for Management of Radioactive Waste 50
4.2.2.2 Unique Need for Temporary Storage of Radioactive Waste After Major Incidents 51
4.2.2.3 Considerations for Management of Radioactive Waste Generated from Materials Outside of Atomic Energy Act Processes and Activities 52
4.2.2.3 Management of Commodities and Drinking Water 53
4.2.3 Long-Term Issues and Management Considerations 54
4.3 Site-Specific Optimization Framework in Decision Making 55
4.3.1 Basis of Decision Making ... 55
4.3.2 Principle of Optimization ... 56
4.3.3 Optimization Process .. 58
4.3.4 Guidance on Optimization ... 59
4.3.4.1 Principle of Optimization .. 59
4.3.4.2 Long-Term Monitoring and Management 59
4.3.5 Cleanup Criteria and Standards .. 60
4.4 Steps Toward Long-Term Recovery .. 61
4.4.1 Recovery Planning ... 61
4.4.1.1 Pre-incident Recovery Planning .. 61
4.4.1.2 Post-Incident Recovery Planning ... 63
4.4.2 Remediation of Contamination .. 65
5.1 Role of Optimization in the Decision-Making Process 66
5.1.1 Role of Optimization in the Decision-Making Process 66
5.1.1.1 Decision Team ... 67
5.1.1.2 Recovery-Management Team .. 68
5.1.1.3 Technical Working Group .. 69
5.1.1.4 Stakeholder Working Group ... 69
5.1.2 Evaluating Societal Needs ... 71
5.1.3 Acceptance of Decisions .. 72
5.2 Defining Post Incident Conditions .. 74
5.2.1 Characterizing Contamination ... 74
5.2.2 Defining the Affected Area ... 75
5.2.3 Essential Services 76
5.2.4 Identifying Land Use 76
5.2.5 Understanding Demographics 78

5.3 Assess Impact .. 78
5.3.1 Characterizing Risks 78
5.3.1.1 Industrial Property 80
5.3.1.2 Commercial Property 81
5.3.1.3 Residential Property 81
5.3.2 Site-Specific Conditions 81
5.3.3 Data and Information Requirements 82
5.3.4 Environmental Risk Assessment Tools 82

5.4 Establish Goals and Identify Options 93
5.4.1 Establishing Goals 93
5.4.1.1 Variety of Goals 93
5.4.1.2 Long-Term Health and Environmental Protection ... 95
5.4.2 Identifying Options 95
5.4.2.1 Options for Inhabited Areas 95
5.4.2.2 Shielding Options 96
5.4.2.3 Types of Shielding 96
5.4.2.4 Removal Options 96
5.4.2.5 Self-Help Actions 97
5.4.2.6 Decision Not to Implement Any Recovery Options ... 97
5.4.2.7 Options for Food Production and Drinking Water Supplies 97
5.4.2.7.1 Intervention Along the Soil-to-Plant Pathway ... 98
5.4.2.7.2 Intervention in Animal Production Systems ... 99
5.4.2.7.3 Intervention in Drinking Water Supplies ... 99
5.4.2.7.4 Reassurance 99
5.4.2.8 Waste Disposal Options 99
5.4.2.9 Options for Forest Areas 100

5.5 Evaluating Options 100
5.5.1 Technical Approaches to Supporting Decision Making ... 101
5.5.1.1 Cost-Benefit Analysis 101
5.5.1.2 Other Economic Models 103
5.5.2 Stakeholder Involvement in Evaluating Options ... 104
5.5.2.1 Holistic Approach 104
5.5.2.2 Whole-Community Approach 105
5.5.2.3 Dynamic System 106
5.5.2.4 Fear ... 107
5.5.2.5 Psychological Impacts of Terrorist Incidents 107

5.6 Making Decisions 108
5.6.1 Regulatory Structure 108
5.6.2 Integrating Stakeholders in Decision Making 109
5.6.3 Approaches to Effective Risk Communication During Late-Phase Recovery 111

5.7 Implementing Decisions 112
5.7.1 Transparency of Decision Making 112
5.7.2 Effective Communication During Implementation 113
5.7.2.1 Delivery Channels 114
5.7.2.2 Use of Social Media 114
5.7.3 Program of Implementation 115

5.8 Monitor and Evaluate 116

| 6. Long-Term Management of Radioactive Contamination |
| 6.1 Introduction .. 117 |
| 6.2 Long-Term Monitoring 117 |
| 6.3 Timeframe ... 119 |
| 6.4 Health Monitoring 120 |
| 6.4.1 Monitoring Considerations 120 |
| 6.4.2 Psychological Assessment 122 |
| 6.4.3 Registries .. 126 |
| 6.4.4 Resource Requirements and Infrastructure Needs 128 |

| 6.5 Food and Other Commodities 129 |
| 6.5.1 Food, Water and Agriculture 129 |
| 6.5.1.1 Food .. 129 |
| 6.5.1.2 Water .. 132 |
| 6.5.1.3 Projected Changes in Uses of Agricultural and Pasture Lands 133 |

| 6.5.2 Other Commodities and Critical Infrastructure 134 |
| 6.5.2.1 Medical Products 134 |
| 6.5.2.2 Consumer Products 135 |
| 6.5.2.3 Industrial .. 135 |
| 6.5.2.4 Critical Infrastructure and Property 135 |

| 6.5.3 Release of Other Properties 136 |
| 6.5.3.1 Surface Contamination 137 |
| 6.5.3.2 Volume Contamination 142 |

| 6.6 Economic Monitoring 143 |
| 6.7 Environmental Monitoring and Cessation of Monitoring 146 |
CONTENTS

6.8 Long-Term Management ... 147
 6.8.1 Food and Agriculture ... 147
 6.8.2 Water ... 148
 6.8.3 Forests and Recreation Areas 149

7. Summary of Recommendations 150
 7.1 National Strategy Promoting Community Resilience 151
 7.2 Late-Phase Response Integration into Emergency Planning 152
 7.3 Site-Specific Optimization 154
 7.4 Stakeholder Engagement and Empowerment 158
 7.5 Communication Plan ... 160
 7.6 Adaptive and Responsive Cleanup Strategies 162
 7.7 Research and Development 168
 7.8 Continuous Adaptive Learning 172

Appendix A. Lessons Learned from Historic Incidents 174
 A.1 Introduction and the International Nuclear and Radiological Event Scale 174
 A.2 Lessons from Nuclear or Radiological Incidents 176
 A.2.1 Nuclear Power Plant Accident at Fukushima, Japan (2011) 178
 A.2.1.1 Description of the Incident 178
 A.2.1.2 Summary of Impacts .. 178
 A.2.1.2.1 Radiation Exposures 178
 A.2.1.2.2 Contamination of Land 179
 A.2.1.2.3 Contamination of Foodstuffs 179
 A.2.1.2.4 Environmental Contamination 180
 A.2.1.3 Summary of Long-Term Recovery 180
 A.2.1.4 Special Aspects of the Incident 181
 A.2.1.5 Lessons Learned ... 181
 A.2.2 Poisoning of Alexander Litvinenko with 210Po in London (2006) 182
 A.2.2.1 Description of the Incident 182
 A.2.2.2 Summary of Impacts .. 183
 A.2.2.3 Summary of Long-Term Recovery 185
 A.2.2.3.1 Cleanup Criteria 185
 A.2.2.3.2 Approach to Environmental Remediation and Technology 185
 A.2.2.3.3 Mobile Contamination 186
 A.2.2.3.4 Fixed Contamination 186
A.2.2.3.5 Waste Management and Disposal 187
A.2.2.3.6 Stakeholder Involvement and Communication 187
A.2.2.4 Special Aspects of the Incident 187
A.2.2.5 Lessons Learned.. 188

A.2.3 Cesium-137 Source Accident, Goiânia, Brazil (1987) 188
A.2.3.1 Description of the Incident 188
A.2.3.2 Summary of Impacts 189
A.2.3.3 Summary of Long-Term Recovery 189
A.2.3.4 Special Aspects of the Incident 190
A.2.3.5 Lessons Learned.. 190

A.2.4 Chernobyl Nuclear Reactor Accident (1986) 191
A.2.4.1 Description of the Incident 191
A.2.4.1.1 Incident Scenario 191
A.2.4.1.2 Radioactive Contamination 192
A.2.4.1.3 Environmental Transport 192
A.2.4.1.4 Affected Populations and the Area 193
A.2.4.2 Summary of Impacts 193
A.2.4.2.1 Health Effects 194
A.2.4.2.2 Cleanup Costs 194
A.2.4.2.3 Psychological and Other Effects 194
A.2.4.3 Summary of Long-Term Recovery 195
A.2.4.3.1 Late-Phase Recovery Issues 195
A.2.4.3.2 Cleanup Criteria: Belarus, Russia and Ukraine 196
A.2.4.3.3 Cleanup Criteria: Norway 197
A.2.4.4 Approach to Environmental Remediation and Technology 197
A.2.4.4.1 Inhabited Areas 197
A.2.4.4.2 Food Production Systems 198
A.2.4.4.3 Forest Ecosystems 198
A.2.4.4.4 Aquatic Ecosystems 198
A.2.4.5 Waste Management and Disposal 198
A.2.4.6 Stakeholder Involvement and Communication 199
A.2.4.7 Lessons Learned.. 199

A.2.5 Three Mile Island Nuclear Accident in Dauphin County, Pennsylvania (1979) 200
A.2.5.1 Description of the Incident 200
A.2.5.2 Summary of Impacts 200
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.5.3 Summary of Long-Term Recovery</td>
<td>201</td>
</tr>
<tr>
<td>A.2.5.4 Special Aspects of the Incident</td>
<td>202</td>
</tr>
<tr>
<td>A.2.5.5 Lessons Learned</td>
<td>202</td>
</tr>
<tr>
<td>A.2.6 Aircraft Accident Involving Thermonuclear Weapons, Near Palomares, Spain (1966)</td>
<td>202</td>
</tr>
<tr>
<td>A.2.6.1 Description of the Incident</td>
<td>202</td>
</tr>
<tr>
<td>A.2.6.2 Summary of Impacts</td>
<td>203</td>
</tr>
<tr>
<td>A.2.6.3 Summary of Long-Term Recovery</td>
<td>204</td>
</tr>
<tr>
<td>A.2.6.4 Special Aspects of the Incident</td>
<td>204</td>
</tr>
<tr>
<td>A.2.6.5 Lessons Learned</td>
<td>205</td>
</tr>
<tr>
<td>A.2.7 Windscale Fire (1957)</td>
<td>205</td>
</tr>
<tr>
<td>A.2.7.1 Description of the Incident</td>
<td>205</td>
</tr>
<tr>
<td>A.2.7.1.1 Incident Scenario</td>
<td>206</td>
</tr>
<tr>
<td>A.2.7.1.2 Radioactive Contamination</td>
<td>206</td>
</tr>
<tr>
<td>A.2.7.1.3 Affected Populations and Areas</td>
<td>207</td>
</tr>
<tr>
<td>A.2.7.2 Summary of Impacts</td>
<td>207</td>
</tr>
<tr>
<td>A.2.7.2.1 Quantitative Impacts</td>
<td>207</td>
</tr>
<tr>
<td>A.2.7.2.2 Health Effects</td>
<td>208</td>
</tr>
<tr>
<td>A.2.7.2.3 Cleanup Costs</td>
<td>208</td>
</tr>
<tr>
<td>A.2.7.2.4 Psychological Effects</td>
<td>208</td>
</tr>
<tr>
<td>A.2.7.3 Summary of Long-Term Recovery</td>
<td>209</td>
</tr>
<tr>
<td>A.2.7.3.1 Late-Phase Recovery Issues</td>
<td>209</td>
</tr>
<tr>
<td>A.2.7.3.2 Cleanup Criteria</td>
<td>209</td>
</tr>
<tr>
<td>A.2.7.3.3 Approach to Environmental Remediation and Technology</td>
<td>209</td>
</tr>
<tr>
<td>A.2.7.3.4 Waste Management and Disposal</td>
<td>209</td>
</tr>
<tr>
<td>A.2.7.3.5 Stakeholder Involvement</td>
<td>209</td>
</tr>
<tr>
<td>A.2.8 Marshall Islands (1946 to 1958)</td>
<td>211</td>
</tr>
<tr>
<td>A.2.8.1 Description of the Testing</td>
<td>211</td>
</tr>
<tr>
<td>A.2.8.1.1 Incident Scenario</td>
<td>211</td>
</tr>
<tr>
<td>A.2.8.1.2 Radioactive Contamination</td>
<td>211</td>
</tr>
<tr>
<td>A.2.8.1.3 Affected Populations and Areas</td>
<td>211</td>
</tr>
<tr>
<td>A.2.8.2 Summary of Impacts</td>
<td>212</td>
</tr>
<tr>
<td>A.2.8.2.1 Health Effects</td>
<td>212</td>
</tr>
<tr>
<td>A.2.8.2.2 Cleanup Costs</td>
<td>212</td>
</tr>
<tr>
<td>A.2.8.2.3 Psychological Effects</td>
<td>212</td>
</tr>
<tr>
<td>A.2.8.3 Summary of Long-Term Recovery</td>
<td>213</td>
</tr>
<tr>
<td>A.2.8.3.1 Late-Phase Recovery Issues</td>
<td>213</td>
</tr>
</tbody>
</table>
A.2.8.3.2 Cleanup Criteria 213
A.2.8.3.3 Approach to Environmental Remediation and Technology 213
A.2.8.3.4 Stakeholder Involvement and Communication 213
A.2.8.4 Lessons Learned 214
A.2.9 Liberty RadEx, a Recent Exercise in the United States Against Radiological Terrorism (2010) . 214
A.2.9.1 Background 214
A.2.9.2 Incident Scenario 214
A.2.9.3 Objective 215
A.2.9.4 Scope 215
A.2.9.5 Summary of the Exercise 216
A.2.9.6 Special Aspects of the Incident 216
A.2.9.7 Lessons Learned 216
A.3 Lessons from Nonradiological Incidents 217
A.3.1 Hurricane Katrina Disaster (2005) 217
A.3.1.1 Description of the Incident 217
A.3.1.2 Summary of Impacts 218
A.3.1.2.1 Economic Impacts 218
A.3.1.2.2 Environmental Impacts . . 218
A.3.1.2.3 Health Impacts 218
A.3.1.3 Summary of Long-Term Recovery . . 219
A.3.1.4 Special Aspects of the Incident 220
A.3.1.5 Lessons Learned 220
A.3.2 Anthrax Attacks in the United States (2001) 221
A.3.2.1 Description of the Incident 221
A.3.2.2 Summary of Impacts 221
A.3.2.3 Summary of Long-Term Recovery . . 222
A.3.2.4 Special Aspects of the Incident 223
A.3.2.5 Lessons Learned 223
A.3.3 Terrorist Attacks of September 11 at New York City (2011) 223
A.3.3.1 Description of the Incident 223
A.3.3.2 Summary of Impacts 224
A.3.3.2.1 Health Impacts 224
A.3.3.2.2 Property Impacts 225
A.3.3.2.3 Economic Impacts 225
A.3.3.2.4 Societal Impacts 225
A.3.3.3 Summary of Long-Term Recovery . . 226
A.3.3.4 Special Aspects of the Incident 226
A.3.3.5 Lessons Learned 226
A.4 Summary of Lessons Learned from Historic Incidents 227
A.4.1 Conclusions on Lessons Learned 227
A.4.2 Resilience .. 227
A.4.3 Communication .. 228
A.4.4 Stakeholder Engagement 228
A.4.5 Research and Development 230
A.4.6 Pre-incident Recovery Planning 230
A.4.7 Long-Term Monitoring of the Environment and Public Health 231
A.4.8 Significance of Ongoing Lessons Learned from the Fukushima Dai-ichi Nuclear Accident ... 231

Appendix B. Current Practice in Managing Radioactive Waste ... 233
B.1 Introduction ... 233
B.2 Waste Classification and Inherent Deficiencies 233
B.3 Estimating Volumes of Radiological Waste and Understanding Remaining Disposal Capacities ... 237
B.4 Waste Treatment and Staging 238
B.5 Final Disposal Sites 239
B.6 Low-Level Radioactive Waste Disposal Facilities ... 242
B.7 Waste Transportation and Packaging 243
B.8 Need for a Risk-Informed Radioactive Waste Management Approach 243

Appendix C. Decontamination Cleanup Technologies for Large Areas 245
C.1 Introduction ... 245
C.2 Decontamination Technologies or Management Options for Contaminated Surfaces 249
C.2.1 No-Action Alternative 250
C.2.2 Biological Decontamination Technologies 250
C.2.2.1 Microbiological Effects 250
C.2.2.2 Phytoextraction 251
C.2.2.3 Phytostabilization 251
C.2.3 Chemical Decontamination Technologies or Management Options 252
C.2.3.1 Chelation and Organic Acids 252
C.2.3.2 Strong Mineral Acids and Related Materials .. 253
C.2.3.3 Chemical Foams and Gels 253
C.2.3.4 Oxidizing and Reducing Agents 254
C.2.4 Physical Decontamination or Management Options .. 255
C.2.4.1 Strippable Coatings 256
C.2.4.2 Centrifugal Shot Blasting 256
C.2.4.3 Concrete Grinder 257
Appendix E. Risk Communication in Late-Phase Recovery from Nuclear and Radiological Incidents: Strategies, Tools and Techniques

E.1 Introduction 307
E.2 Differences Between a Nuclear or Radiological Incident and Other Hazards 307
 E.2.1 Psychological and Sociological Impacts of a Radiological Incident 308
 E.2.2 Community Support and Communication System .. 309
 E.2.3 Messaging in the Aftermath of a Nuclear or Radiological Terrorism Incident 309
E.3 Strategies for Overcoming Barriers to Effective Risk Communication in Recovery from a Nuclear or Radiological Incident 312
 E.3.1 Seven Cardinal Rules for Effective Risk Communication 314
 E.3.2 Risk Communication Models 317
 E.3.2.1 Risk Perception Model 317
 E.3.2.2 Mental Noise Model 317
 E.3.2.3 Negative Dominance Model 318
 E.3.2.4 Trust Determination Model 319
 E.3.3 Challenges to Effective Risk Communication in the Late-Phase Recovery from a Nuclear or Radiological Incident 319
 E.3.3.1 Selectivity and Bias in Media Reporting About Risks 319
 E.3.3.2 Psychological, Sociological and Cultural Factors that Create Public Misperceptions and Misunderstandings About Risks 320
 E.3.4 Strategies for Overcoming Selective and Biased Reporting by the Media About Radiation Risks 321
 E.3.5 Strategies for Overcoming the Psychological, Sociological, and Cultural Factors that Can Create Public Misperceptions and Misunderstandings About Risks 321
E.4 Summary .. 348

Appendix F. Practical Aspects in the Optimization Process During Late-Phase Recovery 349
F.1 Characterizing Radiological Conditions 349
F.2 Environmental Contamination Considerations 353
 F.2.1 Properties of Contamination in the Environment 353
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.2.2</td>
<td>Contamination in Urban/Inhabited Areas</td>
<td>355</td>
</tr>
<tr>
<td>F.2.3</td>
<td>Risk Characteristics of Residual Contamination</td>
<td>363</td>
</tr>
<tr>
<td>F.3</td>
<td>Remediation Considerations</td>
<td>365</td>
</tr>
<tr>
<td>F.3.1</td>
<td>Scope of Remediation</td>
<td>365</td>
</tr>
<tr>
<td>F.3.2</td>
<td>Land Uses</td>
<td>369</td>
</tr>
<tr>
<td>F.3.3</td>
<td>Decontamination</td>
<td>371</td>
</tr>
<tr>
<td>F.3.3.1</td>
<td>Decontamination of Housing, Land and Structures</td>
<td>373</td>
</tr>
<tr>
<td>F.3.3.2</td>
<td>Decontamination of Roads, Paved Surfaces and Gutters</td>
<td>374</td>
</tr>
<tr>
<td>F.3.3.3</td>
<td>Decontamination of Woodland</td>
<td>375</td>
</tr>
<tr>
<td>F.3.3.4</td>
<td>Decontamination of Farmland</td>
<td>375</td>
</tr>
<tr>
<td>F.3.3.5</td>
<td>Volume Reduction Techniques for Waste</td>
<td>375</td>
</tr>
<tr>
<td>F.3.4</td>
<td>Radioactive Waste</td>
<td>376</td>
</tr>
<tr>
<td>F.4</td>
<td>Radiation Doses</td>
<td>378</td>
</tr>
<tr>
<td>F.4.1</td>
<td>Individual Doses</td>
<td>378</td>
</tr>
<tr>
<td>F.4.2</td>
<td>Collective Doses</td>
<td>380</td>
</tr>
<tr>
<td>F.4.3</td>
<td>Long-Term Dose Reduction</td>
<td>381</td>
</tr>
<tr>
<td>F.5</td>
<td>Optimization Considerations</td>
<td>381</td>
</tr>
<tr>
<td>F.5.1</td>
<td>Multi-Attribute Approach</td>
<td>381</td>
</tr>
<tr>
<td>F.5.2</td>
<td>Cost-Benefit Analysis</td>
<td>383</td>
</tr>
<tr>
<td>F.5.3</td>
<td>Stakeholders Involvement in Recovery</td>
<td>395</td>
</tr>
<tr>
<td>F.5.3.1</td>
<td>Roles and Responsibilities of Stakeholders</td>
<td>396</td>
</tr>
<tr>
<td>F.5.3.2</td>
<td>Recovery Core Principles</td>
<td>397</td>
</tr>
<tr>
<td>F.5.3.3</td>
<td>Recovery Success Factors</td>
<td>398</td>
</tr>
</tbody>
</table>

Appendix G. National Radiological Guidance on Late-Phase Recovery and Related Issues | 399 |
G.1	National Response Framework	399
G.2	National Disaster Recovery Framework	400
G.3	Federal Protective Action Guidance Specific to Nuclear or Radiological Incidents	401
G.4	Current Statutory Cleanup Guidance and Requirements	402

Abbreviations and Acronyms | 407 |
Glossary | 409 |
References | 427 |
Scientific Committee and Staff | 456 |
The NCRP | 466 |
NCRP Publications | 476 |