Contents

Preface ... iii

1. Executive Summary .. 1

2. Introduction ... 8
 2.1 Background for Present Study 8
 2.1.1 Recommendations for Purposes of Radiation
 Protection .. 9
 2.1.2 Assumptions for Purposes of Cancer Risk
 Assessment .. 10
 2.1.3 Previous Reviews by NCRP 12
 2.2 Importance of Present Evaluation 13
 2.3 Term to Describe Modifying Factor to Represent
 Biological Effectiveness 15
 2.4 Specification of Reference Radiation 17
 2.5 Use of Effectiveness Ratio in Cancer Risk Assessments . 19
 2.6 Approach to Evaluation of Biological Effectiveness 21

3. Spectral Characteristics of Representative Low
 Linear-Energy Transfer Radiations 25
 3.1 Production of Energetic Secondary Electrons by Photons 26
 3.2 Representative Spectra of Incident Photons 29
 3.3 Spectra of First-Collision Electrons and Tritium Beta
 Particles ... 32
 3.4 Spectra of Lower-Energy Electrons Produced by First-
 Collision Electrons 36

4. Line of Evidence: Microdosimetry 39
 4.1 Linear-Energy Distributions Produced by Photons 43
 4.2 Prediction of R_i Based on $f(y)$ 48
 4.3 Evaluation of the PDF of R_i 59

5. Line of Evidence: Deoxyribonucleic Acid Damage 64
 5.1 DNA Damage from Ionizing Radiation 64
 5.2 Photon and Electron Damage to DNA 67
 5.3 Experimental Data on Relative Biological Effectiveness
 for DNA Double-Strand Breaks 68
 5.4 Relative Biological Effectiveness of DNA Double-Strand
 Breaks from Theoretical Simulations 79
5.5 Enhancement of Relative Biological Effectiveness for Slow-Rejoining Double-Strand Breaks
5.6 Enhancement of Relative Biological Effectiveness for Complex Double-Strand Breaks from Simulations
5.7 Role of DNA Base Damage
5.8 Estimation of Probability Density Functions for R_i of Double-Strand Breaks and also with Enhancement for Biological Severity
 5.8.1 PDFs of R_i for 15 to 30 keV Photons
 5.8.2 PDFs of R_i for 1.5 keV Photons
 5.8.3 PDF of R_i for 40 to 60 keV Photons
 5.8.4 PDF of R_i for >60 to 150 keV Photons
 5.8.5 PDF of R_i for Tritium Beta Particles
 5.8.6 Summary of Recommended PDFs
 5.8.7 Relevance of R_i for Initial DSBs in DNA

6. Line of Evidence: Cellular Radiobiology and Animal Studies
 6.1 Introduction
 6.2 Structural Chromosome Aberrations
 6.2.1 Studies Using Conventional Giemsa Staining
 6.2.2 Difficulties with Studies Using Giemsa Staining
 6.2.3 Studies Using FISH and mFISH
 6.3 Micronuclei
 6.4 Cell Survival and Cell Killing
 6.5 Cell Mutation
 6.6 Cellular Transformation
 6.7 Effects in Cells (in vitro and in vivo) from Low-Energy Radionuclide Emissions
 6.8 Other Considerations of Cellular Effects
 6.9 Studies of Cancer and Other Organ Endpoints in Whole Animals
 6.9.1 Studies with External Radiation
 6.9.2 Studies with Radionuclides Incorporated in Animal Tissues
 6.10 Development of Probability Density Functions of R_i
 6.10.1 Photons of Energy 1.5 keV (AlK)
 6.10.2 Photons of Energy 15 to 30 keV
 6.10.3 Photons of Energy 40 to 60 keV or >60 to 150 keV
 6.10.4 Tritium Beta Particles
 6.11 Summary

7. Line of Evidence: Human Epidemiology
 7.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Committee</td>
<td>264</td>
</tr>
<tr>
<td>The NCRP</td>
<td>270</td>
</tr>
<tr>
<td>NCRP Publications</td>
<td>281</td>
</tr>
</tbody>
</table>