Contents

Preface ... iii

1. Executive Summary .. 1
 1.1 General .. 1
 1.2 Recommendations .. 3

2. Introduction .. 9
 2.1 Purpose of Report .. 10
 2.2 Background .. 10
 2.2.1 History of Guidance and Regulations for Research
 Involving Human Subjects 12
 2.2.2 Issues Specific to Research Involving Ionizing
 Radiation to Human Subjects 15
 2.2.3 Scope of the Report 18

3. Basics of Radiobiology, Radiation Protection, and
 Radiation Dose .. 19
 3.1 Basic Radiobiology ... 19
 3.1.1 Tissue Reactions and Stochastic Effects 21
 3.1.2 Linear-Nonthreshold Dose-Response Model 22
 3.1.3 Radiation Effects and Risks to the Individual,
 Fetus, and Family Members 23
 3.1.3.1 Radiation Effects to the Individual 23
 3.1.3.2 Heritable Genetic Effects 29
 3.1.3.3 Radiation Effects to the Fetus 29
 3.1.3.4 Controlling Radiation Dose to the
 Nursing Infant from
 Radiopharmaceutical Administrations
 to the Mother 30
 3.1.3.5 Controlling Radiation Dose to Family
 Members ... 34
 3.2 Framework for Radiation Protection 35
 3.2.1 Three Principles of Radiation Protection 35
 3.2.2 NCRP 2018 Recommendations for Radiation
 Protection ... 36
 3.3 Quantities and Units Describing Radiation Dose 37
 3.3.1 Exposure ... 37
 3.3.2 Absorbed Dose 38
 3.3.3 Equivalent Dose 39
 3.3.4 Effective Dose 40
3.3.5 Linear-Energy Transfer 42
3.3.6 Other Dose Quantities 42
3.3.7 Administered Activity 44

4. Regulatory Requirements for Institutional Supervision of Research .. 45
 4.1 U.S. Regulatory Structure for Human Research Radiation Protection 45
 4.1.1 Institutional Review Board 46
 4.1.2 Radiation Safety Committee and Radiation Safety Officer .. 47
 4.2 Regulation of Radioactive Materials and Electronic Products ... 48
 4.2.1 Regulation of Radioactive Materials 48
 4.2.2 Regulation of Electronic Products 49
 4.3 Investigational Drugs and Radiopharmaceuticals 49
 4.3.1 Radioactive Drugs and the Radioactive Drug Research Committee 50
 4.3.2 New Drug Application and Abbreviated New Drug Application 52
 4.4 Investigational Devices 52
 4.4.1 Investigational Device Exemptions 53
 4.4.2 Clinical Investigations to Support Premarket Submissions .. 55
 4.5 Expanded and Early Access to Investigational Drugs and Medical Devices 55
 4.5.1 Expanded Access (“Compassionate Use”) 55
 4.5.2 Humanitarian Device Exemption 56
 4.5.3 Treatment Use of an Investigational Device 56

5. Identification of Experimental Studies Utilizing Ionizing Radiation ... 58
 5.1 Diagnostic-Imaging Modalities 60
 5.1.1 Radiography .. 60
 5.1.2 Dual-Energy X-Ray Absorptiometry 61
 5.1.3 Fluoroscopy ... 62
 5.1.4 Computed Tomography 62
 5.1.5 Nuclear Medicine 63
 5.1.6 Ultrasoundography 64
 5.1.7 Magnetic Resonance Imaging 64
 5.1.8 Fusion Imaging .. 67
 5.2 Image-Guided Interventions 68
 5.3 Therapeutic Radiation: Radiation Therapy and Radionuclide Therapy 75

6. Distinguishing Between Radiation Use for Research and Standard Patient Care 78
6.1 Imaging Examinations Indicated in Standard Patient Care ... 79
6.2 Imaging Examinations Required by Research Protocol .. 80
6.3 Imaging Examinations Requiring Greater Frequency by Research Protocol 81
6.4 Substitution of Imaging with Ionizing Radiation by Imaging without Ionizing Radiation 82
6.5 Image-Guided Interventions: Standard of Care versus Research 83
6.6 Radiation Therapy: Standard of Care versus Research .. 84

7. Estimation of Radiation Dose ... 85
7.1 Dose Estimation for X-Ray Imaging ... 89
7.2 Dose Estimation for Computed Tomography ... 90
7.3 Dose Estimation for Image-Guided Interventions ... 92
7.4 Dose Estimation for Nuclear Medicine and Other Procedures Using Unsealed Radioactive Materials ... 94
7.5 Dose Estimation for Radiation Oncology ... 96
7.6 Radiation Dose in Perspective ... 96

8. Estimation of Radiation Risk and Reasonableness of Radiation Use in Research 102
8.1 Terminology and Definitions Relating to Risk ... 102
 8.1.1 Descriptors of Risk ... 103
 8.1.2 Radiation Detriment .. 104
8.2 Estimating Cancer Risk from Average Organ Doses .. 106
8.3 Uncertainties in Risk Estimates .. 107
8.4 Factors Influencing Individual Risk of Cancer .. 109
8.5 Radiation Dose in Risk Estimations ... 110
 8.5.1 Absorbed Dose .. 110
 8.5.2 Effective Dose ... 111
 8.5.3 Lifetime Attributable Risk Models ... 115
8.6 Second Primary Cancers Following Radiotherapy ... 116
8.7 Hereditary Effects .. 117
8.8 Tissue Reactions ... 118
8.9 Fetal Effects .. 123
8.10 Determining Reasonableness of Ionizing Radiation Use in Research Protocols 125

9. Optimization of Radiation Dose ... 128
9.1 Dose Optimization in Projection Radiography .. 130
9.2 Dose Optimization in Computed Tomography .. 134
9.3 Dose Optimization in Fluoroscopically Guided Interventions 135
9.4 Dose Optimization in Nuclear Medicine and Fusion Imaging ... 136
9.5 Dose Optimization in Radiation Oncology and Radionuclide Therapy .. 137

10. Ethics in Human-Studies Research 139
10.1 Basic Ethical Considerations in Human-Studies Research ... 139
10.2 Application of Ethics to Fundamental Principles of Radiation Protection ... 141
10.3 Ethics in Clinical Medicine versus Research 143
10.4 Respect for Autonomy and the Rule to Seek Informed Consent ... 144
10.5 The “Informed” Part of Informed Consent 144
10.6 The “Consent” Part of Informed Consent and Intentionality ... 145
10.7 Consent: Voluntariness and Controlling Influences 146
10.8 Vulnerable Populations ... 147
10.9 Cumulative Dose and Human-Studies Research 147
10.10 Scenarios Applying Ethical and Radiation Protection Principles to Human-Studies Research 149

11. Informed Consent .. 151
11.1 Clear Language ... 152
11.2 Addressing Literacy and Numeracy 155
11.3 Keeping the Length of the Consent Document Reasonable and Commensurate with Radiation and Overall Protocol Risk ... 157
11.4 Communicating Risk, Uncertainty and Latency in Research Involving Radiation 159
11.5 Benchmarks and Circularity in Communicating Information on Radiation Dose 162
11.6 Studies Involving Children and Other Vulnerable Populations ... 163
11.7 Informed Consent for Studies Involving Diagnostic Examinations ... 166
11.8 Informed Consent for Studies Involving Image-Guided Interventions .. 167
11.9 Informed Consent for Studies Involving Therapeutic Radiation .. 168

12. Summary and Conclusions 170
12.1 Regulatory Requirements 170
12.2 Radiobiology and Radiation Protection 171
12.3 Estimating Radiation Dose 172
12.4 Estimating Radiation Risk 172
12.5 Research Use of Radiation 173
12.6 Ethical Framework and Informed Consent for the Research Use of Radiation 174
Appendix A. Examples of Language for Informed Consent for Human-Studies Research Involving Ionizing Radiation Based on Radiation Exposure177
A.1 Studies Involving Radiation from Diagnostic Examinations: Adults180
A.1.1 Minimal to Minor Dose: $E < 3 \text{ mSv}$180
A.1.2 Minor to Low Dose: E Between 3 and 50 mSv181
A.1.3 Low Dose: E Between 50 and 100 mSv182
A.2 Studies Involving Radiation from Diagnostic Examinations: Children [all ages (under 18 y) and mixed ages] ...182
A.2.1 Minimal to Minor Dose: $E < 3 \text{ mSv}$182
A.2.2 Minor to Low Dose: E Between 3 and 50 mSv183
A.2.3 Low Dose: E Between 50 and 100 mSv183
A.3 Studies Involving Radiation from Image-Guided Interventions ...184
A.4 Studies Involving High-Dose Therapeutic Radiation: External-Beam, Brachytherapy, and Radionuclide Therapy ...185

Appendix B. Generation of Dose Estimates for Computed Tomography188
Abbreviations, Acronyms and Symbols ...190
Glossary ...192
References ...203
Scientific Committee ...242
The NCRP ...248
NCRP Publications ...259